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INTRODUCTION

For many years, observations of the Earth radiation budget have been made from
orbiting satellites. These observations can be analyzed by suitable techniques to
estimate the radiant exitance field at the top of the atmosphere. A number of such
data analysis techniques are available, each with its own simplifying assumptions and
characteristics which affect the derived radiant exitance. In the past, there has
been some consideration of how errors in measurements and errors associated with a
given technique affect the derived radiant exitance. However, little emphasis has
been placed on the differences between the techniques themselves and how these dif-
ferences affect the derived radiant exitances. In the present study the effect on
the radiant exitance estimates of analyzing the same data with three techniques is
examined.

The longwave component of the Earth radiation budget, measured by a wide field
of view radiometer aboard an orbiting satellite, has been chosen as the data type for
this study. Each measurement is an integral of the irradiance from all points within
the field of view weighted by the directional response of the sensor. The shape
factor technique has been the most popular way to solve this integral measurement
equation. Each measurement is divided by a scaler to derive the radiant exitance at
the top of the atmosphere. With another approach, the parameter estimation tech-
nique, all measurements are processed together as a batch and the radiant exitance
estimate is defined as a least squares fit to the data. With the third approach, the
deconvolution technique, use is made of the fact that spherical harmonics are the
eigenfunctions of the integral measurement operator. These three techniques are
studied by applying them to the same set of radiation data and comparing the result-
ing radiant exitances on a global, zonal, and 10° regional scale.

Details of the technique derivations and implementations are very important to
understanding the results. For this reason the basic measurement equation which
relates the measurements to the derived radiant exitance is formulated. Each tech-
nique is derived from this equation, and the associated assumptions are set forth.
In addition, each technique has its own unique implementation. For example, the
results of the shape factor technique depend on the size of the surface area over
which point estimates are averaged to produce regional estimates. The parameter
estimation results are affected by the numerical integration scheme employed and by
the model of the radiation directional function. The deconvolution results also are
a function of this model and in addition vary with the degree of truncation of the
spherical harmonic representation. Each of these aspects of the techniques is inves=-
tigated by means of numerical examples and discussed. The results of the deconvolu-
tion technique are in terms of spherical harmonics, while the results of the other
two techniques are regional radiant exitances. To compare these three techniques,
their results must be transformed to the same coordinate system, and the transforma-
tion also affects the results. Finally, we examine the advantages and disadvantages
of each data analysis technique.



SYMBOLS

aﬁ,bﬁ complex coefficients of spherical harmonics, W-m~ 2

A area, kmz

Ag area of globe, km2

B matrix of influence coefficients (see eq. (13))

Bik influence of radiant exitance of kth region on ith measurement
Cm,Sm,Ig integrals defined by equations (27) through (29)

cﬂ,sg real coefficients of spherical harmonics, W’--m-2

F shape factor (see eg. (7))

h satellite altitude above Re’ km

K total number of regions

L Earth-emitted radiance, W-m 2-sr |

4 measurement operator

m measured radiation at satellite altitude, W-m"2

M radiant exitance, W-m_ 2

N degree of truncation; also, number of measurements

Nﬂ normalizing coefficients for spherical harmonics

Pg associated Legendre polynomial of degree n and order m

r distance from surface element to satellite, km '
R directional function, sr |

Ry radius of Earth-~atmosphere system, km

s(a) angular response of sensor

X arbitrary real function on the surface of a sphere

Y:n'Y:n real spherical harmonics of degree n and order m

Yﬁ complex spherical harmonic of degree n and order m

a cone angle at satellite from satellite nadir to point on surface of Earth
o cone angle to horizon



B clock angle from north about the satellite nadir to point on surface

of Earth
Bn smoothing parameter (see eq. (31))
Y Earth central angle
Y* angular radius of a circular region
5% Kronecker delta function
6 zenith angle
0 colatitude
Kn nth eigenvalue of measurement operator
o] regional correlation coefficient
PLY) weighting function
o2 variance of random variable
% degree dispersion, W—m.-2 (see eq. (39))
¢ azimuth
& longitude
(9 solid angle, sr
Subscript:
s satellite
Abbreviations:
FOV field of view
LD limb darkening
Lamb Lambertian

A circumflex (~) over a symbol denotes an estimate.
denotes the smoothed radiant exitance field.

THEORY

A tilde (~) over a symbol

Formulation of Problem for Emitted Radiation

The surface at the top of the Earth-atmosphere system is approximated by a
sphere of radius Re' The Earth-emitted radiance 1L leaving any point on this
spherical surface is modeled as a function of colatitude ©, longitude &, and zenith



angle © of the exiting ray and is not a function of azimuth ¢ (see fig. 1). The
radiant exitance M at a point on this surface is given by

2T
M(0,®) = f
$=0
or
/2
M(©,3) = 2n _[ L(0,%,0) cos O sin © a0 (1
6=0

A radiation directional function for emitted radiation R(©,$,0), the limb darkening
function, is defined so that

L(0,®,8) = —M(0,2) R(O,2,0) (2)

A=

In order for equations (1) and (2) to be compatible, R must satisfy the normalizing
condition,

/2
2 R(9,%,0) cos © sin © a9 = 1 (3)
0=0

For this study R is assumed to have no azimuthal dependence. If the surface is
Lambertian and radiates with equal intensity in all directions, then R(9,%,0) = 1,



Now consider a radiation sensor at satellite altitude, as shown in figqure 1. 1In
modeling the satellite measurements, we do not consider measurement errors or time
variation of the radiation field. Thus, the radiance from the top of the Earth-
atmospheric system incident on the sensor at a colatitude Os' longitude ¢s' and
altitude h is modeled as

m(0_,®_,h) = j;ov L(0,%,0) s(a) aRk (4)

where © is a function of the locations of the satellite (6,,%2,) and of the surface
element at the top of the atmosphere (©,2), Q is the solid angle at the satellite
subtended by the surface element, @ is the nadir angle at the satellite from the
local vertical to the surface element, and the integration is carried out over the
field of view (FOV) which depends on 95, Qs’ and h. The function §S(&) is the
angular response of the sensor to incoming radiation. This angular response function
could be expanded to incorporate the geometry of other types of sensors as well as to
incorporate a dependence on azimuth. However, in this study a perfectly black flat-
plate sensor normal to the vertical is assumed for which S(&) = cos . By use of
equation (2), equation (4) may be written

Al=

m(® ,® ,h) = jf M(9,®) R(O,2,0) cos & aR (5)
s s FOV

which relates the known measurement m to the unknown radiant exitance M.

Shape Factor Technique

Many investigators (e.g., Smith et al. 1977, Jacobowitz et al. 1979, Weaver and
House 1979) have used the shape factor technique (also called inverse square law) to
transform wide field of view radiation measurements at satellite altitude to esti-
mates of the radiant exitance at the top of the atmosphere. The measurement m is
divided by a geometric shape factor F +to obtain the radiant exitance associated
with the nadir point. The assumption is made that the radiant exitance at the top of
the atmosphere is constant over the field of view, or that M(Q,®) = M(04,8g), so
that equation (5) gives

A m(0 D Ih)
MO, ,8,) = — S5 — (6)

where the circumflex (~) denotes an estimate and the geometric shape factor is given
by

F =

% j" R(0,3,0) cos a aR (7)
FOV



In most applications, the shape factor is simplified by the further assumption that
the directional function is independent of position; that is, R(9,%,6) = R(O). If
the variables of integration are changed from solid angle £ to the cone and clock
angles & and P, then equation (7) becomes

1 27 ah
F=§/ f R(®) cos a sin a da 4P
B=0 a=0
or
ah
F =2 f R(O) cos @ sin @ 4x (8)
a=0
where & is the cone angle to the horizon, or the extent of the field of view.

From figqure 1 and the law of sines, the following relation is obtained:
sin @ = —=— gin O (9)
R +h
e
Differentiating equation (9) gives

cos & da = R_L cos 6 aé (10)

Substituting equations (9) and (10) into equation (8) yields

R n/2
F=[—2-—) 2 R(9) sin O cos © a6
R + h
e 0=0
or from equation (3)
2
Re
F=IrR +n
e



Thus, the geometric shape factor is independent of the directional function for the
assumptions considered and is a function only of the measurement altitude h. For a
circular orbit, the shape factor is constant for all measurements. Whatever the
case, the shape factor technique is characterized by reducing each measurement indi-
vidually from satellite altitude to a radiant exitance at the top of the atmosphere
by dividing by a geometric shape factor. These individual radiant exitances are used
to define the global radiant exitance field.

Parameter Estimation Technique

With the parameter estimation technique, all measurements are processed as a
batch, and a global radiant exitant field at the top of the atmosphere is produced by
means of a matrix inversion. Consider the surface of the globe divided into K
regions, each with constant radiant exitance M and directional function Rk(e)

(k =1, 2, ..., K). The measurement equation (§) can be expressed in terms of sur-
face area instead of solid angle as

‘/‘ M(9,®) R(O,9,0) cos « cos 8 da
FOV

1
e ,® = —
m( o s,h) p

2
r

where r is the distance from the satellite to the surface element. Incorporating
the assumed regional radiant exitance model gives

cos 9

R (9) cos @ —— 4a
Mk jF"OVk k r2

M=

1
0,8 ,n) =2
m( s’ slh) T

1

k

where the integration is over the surface area that is in both the field of view and
the kth region. Thus, the ith measurement is modeled as

K
m = >, B, M (i =1, 2, «eu, N) (11)

where B;, is the influence coefficient of M, on the ith measurement and is given
by

' 1 i
= L 9 — 1
Bik pe j;ov Rk( i) cos ai > da (12)

m = BM (13)



where m is a column vector of N measurements, M is a column vector of K
regional radiant exitances, and B is the observational matrix with elements Byye

For a large measurement set (N > K) over the globe, equation (13) represents an
overdetermined set of simultaneous equations which -yield the least sguares solution,

M= ("85 n (14)

Deconvolution Technique

The deconvolution technique, described by Smith and Green (1981) and Bess et al.
(1981), can be viewed as a parameter estimation technique with a spherical harmonic
basis set rather than a piecewise constant basis set. The deconvolution solution to
the measurement equation (5) can be found analytically, but it requires additiomal
assumptions. It is convenient to express the relationship between the measured radi-
ation m(0,,® ) and the unknown radiant exitance M(O,®) as

m(@ ,® ) = 9[M(6,P] (15)
S S

where ¢ denotes the linear integral measurement operator of equation (5). Smith
and Green (1981) have shown that the eigenfunctions of this linear operator are

spherical harmonics, that is,

2v"(0,8)] = A Y0 ,® ) (16)
n n n S S

where Yg(es,és) is a spherical harmonic of order m and degree n evaluated at
the subsatellite point. The associated eigenvalue An is given by

«
A =2 .[ h Po(cos Y) R(O) cos & sin a 4o (17)
n w=0 D

where Pg(cos v) denotes the Legendre polynomial of degree n as a function of the
Earth central angle y (see fig. 1).

Because spherical harmonics are eigenfunctions of the measurement operator, let
the radiant exitance at the surface be represented by a series of spherical harmonics

truncated at degree N:

N n
M(©,2) = 35 3 b Y (0,®) (18)

n=0 m=-n



Also, let the measurements be represented as

N n
me,8) = 3 > al ¥ (0,9 (19)

n=0 m=-n

Substituting equations (18) and (19) into equation (15) and using equation (16) give

and the radiant exitance estimate at the surface is

m
n N n an m
M(6,2) = 3 T Y (0,%) (20)
n=0 m=-n n

Thus, the estimate of the radiant exitance depends on the coefficients of the mea-

surement representation aﬁ and the eigenvalues of the measurement operator Xn.

IMPLEMENTATION OF TECHNIQUES

Important to any data analysis technique is its application. Many times, ease
of application dictates the choice of the technique. Such implementation details as
the coordinate system, numerical techniques, computer time and storage requirements,
and necessary assumptions are all part of a technique and affect the final results.

Field Representations

The radiant exitance field at the top of the Earth's atmosphere is represented
in this paper in two ways: in a regional grid system and in a spherical harmonic
system. Each system has advantages. The transformations from one representation to
the other is necessary when comparing results.

The first system, illustrated in figure 2, is the basic regional grid system.
It is obtained by dividing the Earth into 10° colatitude zones and then subdividing
each zone into an even number of regions of equal area. The equatorial zones
80° < © < 90° and 90° < O < 100° each contain 36 regions, so that each region is
bounded by 10° lines of colatitude and 10° lines of longitude. In all other zones,
the number of regions is selected to make the areas of these regions as nearly as
possible equal to those at the equator. All of these areas are referred to as either
10° X 10° regions or simply 10° regions.



Three other regional grid systems are derived from this basic system. A 5° x 5°
regional grid system is obtained by dividing each 10° region in half in both colati-
tude and longitude. A 2.5° x 2,5° regional grid system is obtained by dividing each
5°¢ region in half in both colatitude and longitude. A third system is obtained by
combining adjacent 10° regions in pairs in each zone to obtain 10° x 20° regions.

The radiant exitance field is represented in these grid systems by a piecewise con-
stant function over the regions.

Figure 2.- Polar view of 10° x 10° regional grid representation.

Another way to represent the radiant exitance field is by a system of spherical
harmonics. If X(9,®2) is a real function on the surface of a sphere, then a repre-

sentation of X(©,d) is

N n
X(0,8) = 3 X E:‘; YD (0,8) + 57 y:‘n(e,cbﬂ (21)

n=0 m=0

where Gg and ST are real coefficients of the spherical harmonics an and an,
respectively. The spherical harmonics are defined by

10



m - gl m
ch(G,Q) = N, cos m®P P (cos Q)
(22)
an(elé) = Ng sin m® Pﬂ(cos 0)
where
m 1/2
(2n + 1)(n - m)!(2 - 50)
Nn = (n + m)!
Moreover, the following properties apply:
f Y v'oa = f Yo ¥ . da = and)s (23)
Sphere en ¢J Sphere J
/ YI;lnYl. dan =0 (24)
Sphere s3J

where 5§ is the Kronecker delta function. The radiant exitance over the surface of

the Earth can be defined by the coefficients Cﬂ and Sﬂ.

Transformation Between Regions and Spherical Harmonics

The regional grid system defines the radiant exitance at every point as a piece-
wise constant function in terms of the regional values. The spherical harmonic sys-~
tem defines the radiant exitance at every point as a linear combination of spherical
harmonics in terms of the coefficients Cg and Sﬂ. A given set of regional values
can be transformed to spherical harmonic coefficients by the principle of orthogonal
projection as follows. Multiplying equation (21) by Yé-(@,@), integrating over the
sphere, and taking into account the orthogonality condigions of equations (23) and
(24) give the coefficients as

f X(0,2) ¥ (0,8) a
Sphere

=}
al™

_Since X(9,®) is known in terms of its regional values Xk, we have

11



K
m 1 m
C = - Z X f Y (6,%) aa
T
o 4 k=1 k Region k cen
and from equation (22),
m
N K ) ]
Crn: = ZPTE > X, f k2 cos m® a® f k2 PI:(cos ©) sin © g©
k=1 ¢=¢k1 O=9k1
or
: K
T g k S Bt ) T(0q.0p5) (23)
Similarly,
B .
— &
T am L ¥ ke SmB17%2) Tn O O%2) (26)

where subscripts 1 and 2 denote the boundaries of a region. The integrals in equa-
tions (25) and (26) are defined as

)
c (@1,®2) = ]ﬁ 2 cos md ad (27)
m o=d
1
®,
s (2,2, = f sin m® a® (28)
" =0
1
)

Hil
™
N

1™(0,,0.) P (cos 0) sin © @@ (29)
n 12 n

These quantities are efficiently computed by recursive formulas (Bess et al. 1981).
Equations (25) and (26) define the transformation between the regional grid system
and the spherical harmonic system.

12



The transformation from the spherical harmonic coefficients to the regional
values also follows from the principle of orthogonal projection. The regional values
of a function X(0,P) are simply the average over the region, or

X(0,%) aa

| -
Region k =a 1 ~[ k2 -[ k2 X(0,®) sin © 40 a® (30)

X =
k Jkegion k da

where A, is the surface area of the kth region. Substituting for X(0,®) and
expressing the results in terms of definitions (27) through (29) yield

_1 N
X = Ay >
n=0

n
m _m m m
Z_:%) Nn In(ek1'ek2) En cm((I)k1 '¢k2> T 8y sm(¢k1 '¢k2._)__|

uet

This equation defines the transformation from the spherical harmonic system to the
regional grid system.

Relationship Between Region Size and
Spherical Harmonic Representation

The transformation from the spherical harmonic system to the regional system is
accomplished by averaging over the region (eq. (30)), which smooths the representa-
tion. Thus, the transformation from regional values back to spherical harmonic coef-
ficients (egs. (25) and (26)) yields a set of coefficients that represent the aver-
aged or smoothed field. However, we wish to recapture as well as possible the origi-
nal unsmoothed field from the regional values. Therefore, the spherical harmonic
coefficients produced from this coordinate transformation must be increased, or
enhanced, to represent the original field. Consider the smoothing parameter
defined by Pellinen (1967) and given by (appendix A)

n

1

'Y*
n = m f Pg(cos Y) sin Y 4y (31)

0

If a field is smoothed by replacing each point value with the average value over a
circular region with radius Y*, then the coefficients EE and gg of the smoothed
spherical harmonic representation are given by Eﬁ = ﬁncﬁ and gg = anﬁ. Rapp
(1977) has shown that smoothing over square regions can be approximated with Bn
provided that an effective radius is used. The effective radius gives circular
regions with the same surface area as square regions. For example, a 10° X 10°
region corresponds to a circular region with 7Y* = 5.63°. The smoothing parameter

13



Bn is presented in figure 3 for two values of Y*. Thus, to recapture the original
spherical harmonic coefficients Cg and 'Sg from the regional values, we first
calculate the spherical harmonic coefficients Eﬁ and S® that represent the smooth

field (egs. (25) and (26)) and then divide them by Bn' that is,

m _ -1~m m _ -13m _
cn—Bnc s =B""s (32)

This approach was followed throughout this study when spherical harmonics were com—
puted from regional values.

1.0

v*=2.8° (5° x 5%
y*=5.63° (10° x 10°)

SMOQTHING
PARAMETER, i

n A
2+
I T I TS ST S IS SR SR S
0 4 8 12 16 20 24
DEGREE, n

Figure 3.- Regional smoothing parameter.

Calculation of Important Parameters

A radiant exitance field can be characterized in a number of ways. Three impor-
tant characteristic parameters are the zonal radiant exitance, the global
radiant exitance, and the radiant exitance gradients. If the regional radiant exit-

ance values are known, then the zonal radiant exitance M5 is

A' _ ZAiMi 1 Z ~
"3, TR ThM (33)
1

14



where i ranges over all regions in the jth colatitude zone and where the prime
denotes zonal values. Similarly, the global radiant exitance is

RS
M = =

g %; Ak g é; k 'k

(34)

:’l-
N
2>

where A is the area of the globe and k ranges over all regions. It can be shown
that thegglobal radiant exitance is identical to C; as given by equation (25). 1In
addition, we define the pole-to-pole gradient as C? and the equator-to—-pole gra-
dient as C,. The deconvolution technique produces these values directly since
they are spherical harmonic coefficients, whereas the shape factor and parameter
estimation techniques produce regional values from which the gradient values are
determined by equation (25).

The radiation fields produced by the three analysis techniques are compared in
two ways. The first comparison is in physical space by comparing regional values,
and the second comparison is in spectral space by comparing the spherical harmonic
coefficients.

Comparison in physical space.—- Define the difference in the ith 10° region
between two radiation fields as AM;. The differences MM in the zonal radiant
exitances follow from equation (33) with M, replaced by AMi. Further, we define
the average zonal difference as

Area weighted mean -1 18
of absolute zonal = A 2: At|Am!| (35)
difference g 3=1 J J

We also define the average 10° regional difference as

Area weighted mean -1 K
of absolute 10° =a 2. A ldm | (36)
regional difference g k=1

Another descriptive parameter is

- 1/2
Standard deviation of -1 — 2 (37)
regional differences } B Ag ]{21 Ak(mk - o)

15



where

K

— -1
M=na"" 3 A (M)
g 2 B

We can also calculate the correlation coefficient between field 1 and field 2 on a
10° regional scale as

=1 (38)

where

Comparison in spectral space.~ In spectral space, we compare the degree disper-
sions Oh of each field given by

{'n m\2 m\ 2 _
o ={2, (c + (s) (n=1,2, ..., N) (39)
n =0 n n

APPLICATION OF TECHNIQUES TO DATA SET

The three techniques which have been presented were used to analyze wide field
of view radiometer data to produce a radiant exitance field at the top of the atmo-
sphere. Each technique has its own assumptions and limitations which are examined
individually in this section. The same data set was used for all numerical examples,
so that the differences in the derived radiation fields are entirely due to the tech-

nique and the assumptions employed.

Earth Radiation Data

The measurement data used in this study to define the Earth's longwave radiation
field were obtained from the Earth Radiation Budget (ERB) instrument aboard the
Nimbus 6 satellite. A description of the ERB instrument and calibration is given by
Smith et al. (1977). The data tapes were supplied by the National Oceanic and Atmos-
pheric Administration.

16



The ERB instrument obtained both fixed wide-angle and scanning narrow—angle
measurements. The data considered here are the fixed wide—angle measurements at
satellite altitude. One data channel recorded the total Earth measurement (0.2 to
50 pm) and another channel recorded the shortwave measurement (0.2 to 3.8 pm). The
longwave contribution is the difference between these two measurements. The ERB
instrument operated with a duty cycle of 2 days on and 2 days off. Measurements were
taken every 16 seconds. The data set for this study consists of approximately 46 000
wide-angle measurements taken during August 1975. The emphasis in this study is not
on the measurement data or the derived fields but on the differences in the fields
derived with different assumptions and techniques.

The model of the radiant exitance field is independent of time; thus all mea-
surement data were collected into 5° X 5° regions at satellite altitude (h = 1070 km)
and averaged. We processed only 1664 averages instead of the 46 000 individual
measurements.

Shape Factor Technique

With the shape factor technique, the radiant exitance at the top of the atmo-
sphere is derived from each measurement by dividing by a shape factor (eq. (6)). The
two basic assumptions are that (1) the radiant exitance at the top of the atmosphere
is constant over the field of view and (2) the estimate of radiant exitance is asso-
ciated with the region which contains the nadir point. As a result of the first
assumption, which is a great simplification, the technique yields point estimates of
the radiant exitance at nadir that are about 5 percent in error (Weaver and Green
1980, Green 1981). However, these estimates are seldom interpreted as point esti-
mates but are used to represent the average radiant exitance over an area. In fact,
these estimates best represent the average radiant exitance over a circular surface
area centered at nadir with a 20° diameter. On the average with the shape factor
technique, the average radiant exitance over this area can be estimated to within
about 1 percent (Weaver and Green 1980, Green 1981). In this study we do not con-
sider point estimates or estimates over circular regions, but estimates over square
regions, over zones, and over the globe. BAll estimates of radiant exitance whose
nadir points are in a particular area are averaged. Thus, the assumption of constant
radiant exitance over the field of view is not as restrictive as one might imagine.
The larger the area, the more appropriate the assumption. The second assumption of
associating the estimate of radiant exitance with the region that contains the nadir
point follows from the geometry of the measurement. For a uniform fieéld, an incre-
mental area centered at nadir has more influence on the measurement than any other
incremental area in the field of view.

In addition to these two assumptions, two simplifying assumptions have been made
about the directional function. First, we assume that R(6) is the same for all
points on the globe. This assumption was shown to yield a shape factor which is
independent of the directional function, namely, F = [Re/(Re + h)]2. Second, we
model h as a constant, 1070 km for the Nimbus 6 data set. Thus, for an Earth
radius of 6378 km and an atmospheric height of 30 km, we have a shape factor of

+
P = ( 6378 + 30

2
6378 + 30 + 1070) = 0.7343 (40)

17



With these assumptions the only parameter that affects the derived radiation
field is the size of the regional grid system that is employed. The 46 000 measure—
ments have been averaged over a 5° X 5° grid system at satellite altitude. Each of
these averages is divided by the shape factor to produce an estimate of the average
radiant exitance of a 5° X 5° region at the top of the atmosphere. These estimates
can easily be combined to yield 10° X 10° regional radiant exitance estimates.
Another approach would be to average the 46 000 measurements over a 10° X 10° grid
system at satellite altitude and then to reduce each average to the top of the atmos-
phere. This approach allows for less spatial variation and can be considered infe-
rior to the first approach. The difference between these two solutions illustrates
the effect of the grid system size.

Table I presents these two solutions and the differences between Ehem. The
global radiant exitances as given by equation (34) differ by 0.30 W-m “ because of

TABLE I.- SOLUTIONS FROM SHAPE FACTOR TECHNIQUE ILLUSTRATING

EFFECT OF GRID SYSTEM

Case 1, Case 2, Case 1
Parameter data averaged data averaged minus
over 5° regions | over 10° regions | case 2

Global radiant exi‘t:ance,__\'»‘l--m-2 cecccsconns 235.39 235.09 0.30
Pole-to-pole gradient, W2 ieieinenanns 11.40 11.61 -.21
Equator-to-pole gradient, W—m'-2 sesessesse -22.03 -22.27 .24
10° regional radiant exitance, W—m_zz
Pacific, tropical sececcesccccsccecncces 266.03 265.58 .45
Pacific, high latitude cecsecccccccccces 191.33 191.23 .10
Atlantic, subtropical ecececececcccscsces 268.29 268.02 27
SAhAra eeeceecsecceccsnoccescsaassavsesnsoe 279.59 281.60 -2,01
Greenland seesccecccssecsscssccsscsscncas 221.09 220,71 .38
South POle cececcencovoccsnsorssnccnccsne 124.50 118,57 5.93
Area weighted mean of absolute zonal differences, w-m-2 cesvesssesescvcan 0.34
Area weighted mean of absolute 10° regional differences, W-m_2 ceesvecsos .83
Standard deviation of 10° regional differences, W—m_2 cecsesssssssansssnas 1.44

the grid system. The pole-to—pole gradient and the equator-to-pole gradient are
given by the spherical harmonic coefficients Cy and C,, respectively, at the top
of the atmosphere, as determined from equations (25) and (32). The global value (g
can also be calculated from these equations which give the same value as equa-

tion (34), since the smoothing is given by B, = 1. Also included in table I are the
10° regional radiant exitances for six specific regions. The average zonal differ-
ence as computed from Sguation (35) is 0.34 W-m -, nearly the same as the global
difference of 0.30 W-m “. In general, the smaller the area in question, the greater
the difference. This is illustrated by the average regional difference of 0.83 W-m
as computed from equation (36) and their standard deviation of 1.44 W—m._2 from equa-
tion (37). If we consider the range of regional differences to be 120 about their
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mean, then they range over 0.30 + 2 (1.44), or from -2.58 W-m 2 to 3.18 W-m 2. (The

mean regional difference is given by the global difference (0.30 W-m_z).) The six
specific regional differences all fall within this range of differences except for
the South Pole.

The zonal differences for the two solutions are plotted in fiqure 4. Notice the
unusually large difference for 160° < O < 170° compared with the small differences
for all other zones. The problem is due to nonuniform satellite sampling combined
with a large latitudinal gradient. Using the 5° grid system, we can determine the
5° zonal radiant exitance from 160° < O < 165° to be 145.38 W-m“ and from
165° < 0 < 170° to be 123.35 wW-m 2. By averaging the two 5° zonal radiant exitances
with the appropriate area weighting, we obtain 136.16 W-m - which corresponds to the
5° grid system solution. In the 10° grid system, this 5° zonal distinction is not
made; averaging all data between 160° < @ < 170° results in 129.54 W-m~ 2. If the
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Figure 4.~ Zonal differences due to grid system (5° or 10°) for
shape factor technique.

satellite sample were uniform with area, then the 10° zonal results would be the
same. Since the number of measurements for 160° < O < 165° was 841 and the number of
measurements for 165° < 0 < 170° was 2154, the southern zone was weighted more. This
nonuniform sampling is a result of orbital geometry and data elimination due to Sun
contamination (Bess et al. 1981). The difference in the 160° < © < 170° zonal rad-
iant exitance is also a function of the latitudinal gradient. If the 5° zonal values
were equal, then the number of measurements would not matter. Notice that the 4if-
ference in the 10° < © < 20° zonal radiant exitance is not nearly as large. This
results from a smaller latitudinal gradient for the northern zone. Nonuniform sampl-
ing combined with a large latitudinal gradient is also the cause of the large differ-
ence in radiant exitance for the South Pole 10° region.

The question arises as to why large differences in radiant exitance do not occur
for the 170° < © < 180° zone. The Nimbus 6 orbit has an inclination slightly less
than 100°, which means that the nadir point slightly exceeds a latitude of 180°.
Thus, we have sampling for the 170° < O < 180° zone, although all of it is near
© = 170°., A similar situation exists at the North Pole. For the 5° grid system, the
satellite samples 170° < O < 175° but not 175° < @ < 180°. Thus, we must extrapolate
into the 175° < © < 180° zone. The rule has been adopted to set this zonal radiant
exitance equal to the 170° < O < 175° estimate. Since both 5° zones have the same
radiant exitance, we understandably obtain an estimate for the 5° grid system which
is similar to the 10° grid system estimate.
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If reducing the size of the grid system from a 10° grid to a 5° grid changes the
160° < O < 170° zonal estimate, then what effect does further reducing the grid sys-
tem to 2.5° have? The 5° grid, like the 10° grid, overweights the estimates toward
the polar values because of the satellite sampling. The 2.5° grid reduces this bias
and increases the zonal radiant exitance to 137.92 W—m._2 for 160° < © € 170°. How-
ever, this small change may not be significant compared with the accuracy of the
shape factor technique.

Parameter Estimation Technique

With the parameter estimation technique, all measurements are processed together
as a batch and the radiant exitance estimate at the top of the atmosphere is a least
squares fit to the data using equation (14). The two basic assumptions are that
(1) the radiant exitance at the top of the atmosphere is constant over a region and
{2) the directional function is known for each region. The first assumption is rea-
sonable since we desire to estimate the mean radiant exitance over a region, and the
estimates we obtain by assuming the radiant exitance to be constant closely resemble
the mean regional radiant exitances. The second assumption of known directional
functions introduces errors into the estimates. Estimates of the radiant exitance
for large areas like the globe or a zone are not as sensitive to the directional
functions as regional estimates. These errors are examined in this section by a
numerical example.

One problem with implementing the parameter estimation technique (eq. (14)) is
the size of the BTB matrix. There are 416, 10° X 10° regions over the globe.
Thus, the 416 X 416 BTB matrix contains 173 056 elements or 83 736 if symmetry is
taken into account. The required computer storage was reduced by one-fourth by esti-
mating the radiant exitance in 10° X 20° regions. These 10° X 20° estimates are
divided into 10° X 10° estimates by a curve fitting scheme presented in appendix B.

A source of error is the choice of the directional function for the 208 rectan-
gular 10° X 20° regions. This function has been denoted Rk(e) and is included in
the calculation of By, (eq. (12)). The effect of different functions was examined
by two numerical examples in which all 10° X 20° regions were assumed to have the
same directional function. In the first case the radiation was assumed to be
Lambertian, or R, (9) = 1. 1In the second case a directional function with a con-
siderable amount of limb darkening was assumed and is given by

R(6) = 1.106 exp(0.0547(1 - sec 9) + 0.09375{exp[2.24(1 - sec 0)] - 1}) (41)

where 0° € 6 < 90°, This function represents a lower bound to a family of limb dark-
ening functions based on Nimbus 2 data (Raschke et al. 1973). If these two direc-
tional functions are considered upper and lower bounds, the two solutions establish
bounds on the radiant exitance due to uncertainty in the regional directional func-

tions.

Part of the implementation of the parameter estimation technique is the selec-
tion of a quadrature formula of the influence coefficients given by equation (12),
that is,
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where Bix is the influence of the kth region (10° X 20° region) on the ith measure-
ment, and the integration is over the ith field of view that is also in the kth
region. A very practical numerical integration scheme is to subdivide the regional
grid system into smaller subregions and approxima%e the integral of equation (12) by
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where Jj ranges over all the subregions that are in both the ith field of view and
the kth region. The subscript J denotes that a parameter is evaluated at the
center point of the jth subregion. BAlso, a subregion is included jin the summation if
its center point qualifies and is excluded otherwise. This means that the boundaries
of the integration are approximated by meridional and latitudinal lines. This bound-
ary error and the quadrature error are reduced by making the subgrid system smaller
at the expense of computational effort. Numerical examples are given for two differ-
ent subgrid systems.

Three numerical examples are presented in table II. The measurement data for
each example are the same and were averaged into 5° x 5° regions at satellite alti-
tude. This reduced the number of measurements to 1664 values, which were processed

TABLE II.- SOLUTIONS FROM PARAMETER ESTIMATION TECHNIQUE ILLUSTRATING

EFFECTS OF QUADRATURE SUBGRID SYSTEM AND DIRECTIONAL FUNCTION

Case 1, Case 2, Case 3, Case 1| Case 2
Parameter Lambertian R, | Lambertian R, limb darkening R, minus minus
5° quadrature | 2.5° quadrature 2.5° quadrature case 2| case 3
Global radiant exitance, w—m-2 ..... censee 235.37 235.42 235.42 -0.05 0
Pole~to-pole gradient, W-m 2 .......eeees. 11.59 11.61 11.58 -.02 .03
Equator-to-pole gradient, W—m 2 ...eeeeses -23.44 -23.35 -23.21 -.09 -.14
10° regional radiant exitance, W-m 2:
Pacific, tropical seccccssscscsscscnssses 270.72 270.64 270.73 .08 -.09
Pacific, high latitude .iecseceeccscneeen 187.63 186.87 187.72 .76 -.85
Atlantic, subtropical c.ccceccscssncsres 279.65 280,04 278.91 -.39 1.13
SAhAYA ssescserereccccncscssssscsccasnesn 307.34 308.38 305.45 -1.04 2,93
Greenland cccccecccescvcsccncescassannan 225.30 226.29 225.59 -.99 .70
South POle ccsecescntcscsosscssscsssssnsean 97.98 96.55 99.71 1.43 -3.16
Computer time, S€C «cc.veccccrcoscrcacnnns 120 1 335 456
Area weighted mean of absolute zonal differences, W2 tiieiiienracaatacaninititeiacnencaas 0.56 0.85
Area weighted mean of absolute 10* regional differences, Wt 2 seeeeesesssascectancncannnes «76 1.20
Standard deviation of 10° regional differences, w-n_z seessecsssvsessrecscusvassseassrnnnns 1.09 1.51
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with the parameter estimation technique (eq. (14)). In the first two cases, we
assumed the radiation to be Lambertian and used a 5° and a 2.5° gubgrid gquadrature
scheme. The average zonal difference is 0.56 W-m “ and the average regional differx-
ence is 0.76 W-m 2. Since the global difference is approximately zero (~0.05 W-m 2),
the average zonal and regional differences reflect the true differences in the shape
of the radiant exitance field. It is reasonable to expect the 2.5° subgrid quadra-
ture scheme to give the better results since the quadrature errors are smaller. The
computer time, also listed in the table, is about three times greater for the smaller
subgrid quadrature. However, 335 seconds of computer time on a Control Data CYBER
173 computer is not considered excessive, so that a 2.5° quadrature scheme was
adopted for this study. The zonal differences are plotted in figure 5 and are
relatively small except for the northern and southern zones.
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Figure 5.- Zonal differences for parameter estimation technique.

Cases 2 and 3 in table II represent the differences due to different directional
functions. The differences are very small on a global scale, larger on a zonal
scale, and still larger on a regional scale. The global radiant exitance was the
same for both cases, and the average zonal difference was 0.85 W-m ¢, The average
regional difference was 1.20 W—m-z, and we would expect the individual regional dif-
ferences to range between #3.02 W-m “. Also, assuming a limb darkening function
increases the computer time from 335 to 456 seconds. It is not clear which of these
two solutions best represents the true radiant exitance field. The first assumes no
limb darkening, while the second probably overestimates the limb darkening. Assuming
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a limb darkening function between these two would probably give better results.
Moreover, if the directional character of each region were known then the solution
would be improved even further. The purpose here, however, is to define on a global,
zonal, and regional scale the differences due to the extreme directional functions.

Deconvolution Technique

With the deconvolution technique, we take advantage of the fact that spherical
harmonics are the eigenfunctions of the measurement operator. If the measurements
are used to define the radiant exitance field at satellite altitude in terms of a
spherical harmonic expansion, then the field is easily reduced to the top of the
atmosphere by the eigenvalues (eq. (20)). This solution is based on the following
three simplifying assumptions: (1) the sensor integrates incoming radiation over its
field of view with its directional response S(®) being a function only of the nadir
angle, (2) the directional dependence of exiting radiation at each point of the top
of the atmosphere is a function only of the zenith angle of the exiting ray, and
(3) continuous measurements are available over a sphere concentric with the Earth.

The first assumption is applicable to most wide field of view sensors because of
their design. Throughout this study we have used S(&) = cos &, or a flat-plate sen-—
sor model. The second assumption, which states that R(©,®,0) = R(6), is a reason-
able approximation for Earth emitted radiation. The third assumption contains two
requirements. The first is that the measurements be continuous over a sphere. Since
physical systems provide discrete measurements, we calculate the spherical harmonic
coefficients with equations (25) and (26) and then approximate the continuous case
with the smoothing parameter Bn’ The second requirement is that the orbit be
circular.

The implementation of the deconvolution technique requires that we define the
directional function R(O®) and that we truncate the spherical harmonic expansion at
some finite degree. To investigate the dependence of the solution on the directional
function, the limiting cases of a Lambertian function (R(9) = 1) and a limb darkening
function (eg. (41)) have been examined. These directional functions affect the solu-
tion through the eigenvalues (eq. (17)), which are given in table III for degree 0
through degree 12. Note that ho = 0,7343 for both directional functions; thus, the

TABLE III.~ EIGENVALUES OF MEASUREMENT OPERATOR

[Re = 6378 + 30 = 6408 km; h = 1070 km]

A, for -
Degree,
n Lambertian R Limb darkening R
] 0.7343 0.7343
1 «7217 .7233
2 .6975 .7019
3 .6632 .6713
4 .6208 6331
5 «5726 .5893
6 .5214 .5419
7 +4693 4929
8 .4185 «4443
9 3707 3974
10 «3267 +3535
11 «2874 «3132
12 2526 2770
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global radiant exitance is unaffected by directional function. It is also interest-—
ing that XO is the shape factor (eq. (40)) used in the shape factor technique. To
examine the effect of the degree of truncation on the solution, we have expanded the
measurements at satellite altitude in a series of spherical harmonics to degree 24 by
equations (25) and (26) and approximated the continuous solution by using Bn based
on 5° X 5° regions. The degree dispersion {(eq. (39)) for this solution is given in
figure 6. The radiant exitance estimate at the top of the atmosphere was computed
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Figure 6.- Degree dispersion of deconvolution solution based on
Lambertian directional function.

by dividing the spherical harmonic coefficients by the eigenvalues Xn based on
Lambertian radiation. The divergence of these two solutions in figure 6 is due to
the smoothing effect of the measurement operator. It is seen that the radiant
exitance spectrum measured at satellite altitude can be divided into two regions, one
in which log Oh decreases approximately linearly with n for n < 15, and one in
which 1log o, is rather constant for n > 15. The spectrum at the top of the atmo-
sphere likewise consists of two regions, one in which log On decreases somewhat
linearly for n < 15, and one in which 1log Cn increases somewhat linearly for

n > 15. The nearly constant spectrum at satellite altitude is interpreted as mea-
surement noise and produces the divergence of the solution at the top of the atmo-
sphere since the eigenvalues are a decreasing sequence of values. Thus, it is
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concluded from figure 6 that the coefficients for n > 15 are due primarily to noise
and contain little information concerning the radiant exitance field; the expansion
is therefore truncated at N = 15,

The interpretation of a nearly constant spectrum as random noise is illustrated
by examining the spectrum of a random field. This field is defined on a 5° regional
grid system where each regional value is a normal random variable with mean of zero
and standard deviation of 10 W—m-z. The expected value of the spectrum for this
field is derived in appendix C and presented in figure 6. Although this spectrum for
a random field gradually increases for n > 15, it gives support to the interpreta-
tion of a nearly constant spectrum as noise.

To investigate the sensitivity of the solution to the directional functions and
the degree of truncation, three cases were examined, as given in table IV. Two
limiting directional functions were examined and two different truncation degrees.

TABLE IV.- SOLUTIONS FROM DECONVOLUTION TECHNIQUE ILLUSTRATING DEGREE OF

TRUNCATION AND OF DIRECTIONAL FUNCTION

Case 1, Case 2, Case 3, Case 1 Case 2

Parameter Lambertian R, | Lambertian R, |limb darkening R, minus minus

degree 15 degree 12 degree 12 case 2 case 3

Global radiant exitance, W—m-2 cesesesenas 235.39 235,39 235.39 0 0
Pole-to-pole gradient, W-m 2 «.eeeceesosss 11.60 11.60 11.58 0 .02
Equator-to-pole gradient, W-m 2 .eeessoeces ~23.19 -23.19 -23.05 0 -.14

10° regional radiant exitance, W-m 2:

Pacific, tropical ceceeeecssccncesasssas 259.70 263.94 264.26 -4.24 -.32
Pacific, high latitude ...cceveeececcsss 190.99 191.40 191.65 ~-.41 -.25
Atlantic, subtropical c..cceesecccccanee 281.28 274.47 273.52 6.81 .95
SANAYA seceesssssoorccnnsssrstarssscnsann 283.54 289.95 288.46 -6.41 1.49
Greenland cecesecssccencsnsccasssssnreas 215.67 213.77 214.32 1.90 -.55
South POle seeesceceressssscssesssnannan 109.38 111.05 113.15 -1.67 -2.10
Area weighted mean of absolute zonal differences, Hkm_2 cesesssesesssesstererstsrersennns 0.85 0.55
Area weighted mean of absolute 10° regional differences, W-m~2 D 3.94 .75
Standard deviation of 10° regional differences, w—m-z e 4.89 .94

As discussed previously, a reasonable choice of the degree of truncation is N = 15
based on the present 1-month data set. However, Bess et al. (1981) have investigated
12 months of Nimbus 6 data and concluded that N = 12 is the appropriate expansion
limit. Therefore, the two solutions based on N = 12 and 15 are compared in

table IV. This coggarison reveals that the average regional difference due to trun-
cation is 3.94 w-m “. Also,_%he average regional difference due to different direc-
tional functions is 0.75 W-m “. Thus, we conclude that on a regional scale, the
degree of truncation has more influence on the solution than the directional func-
tion. The effect of truncation is reduced, however, on a zonal scale, since the
addition of the high-frequency coefficients (n = 13, 14, 15) does not affect the
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zonal values as mach as_the regional values. The average zonal difference due to
truncation is 0.85 W-m < and due to different directional functions is 0.55 W-m “.
The individual zonal differences are plotted in figqure 7. The degree at which the
spherical harmonic expansion should be truncated is very important to the analysis.
However, there is not a clear criterion for choosing this degree. For the remainder
of this study we use a spherical harmonic expansion to degree 12 for the deconvolu-

tion technique.
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Figure 7.- Zonal differences for deconvolution technique.

COMPARISON OF TECHNIQUES

The three data analysis technigues have been derived and examined individually
to establish their necessary assumptions and characteristics. In this section, these
techniques are compared numerically. Since each technigue processes the same mea-
surement data, any differences in the derived radiation fields are a result of the
techniques themselves.

A summary of the three radiation fields that result from the three techniques is
presented in table V and the zonal differences are plotted in figure 8. The shape
factor solution corresponds to the 5° regional grid system and was presented in
table I. This case was chosen to represent the shape factor technique so that all
techniques would have not only a common data set but also a common grid system. The
parameter estimation solution corresponds to the Lambertian directional function and

26



TABLE V.- SOLUTIONS FROM THREE TECHNIQUES FOR COMPARISON

sh P Shape factor Shape factor {Parameter estimation
Parameter ape ar‘amet.er Deconvolution minus minus minus
factor |estimation parameter estimation | deconvolution deconvolution
Global radiant exitance, Wom 2 eieenveees. | 235.39 235.42 235.39 -0.03 ] 0.03
Pole-to~pole gradient, W-m—z ..... esases .a 11.40 11.61 11.60 ~.21 ~-.20 .01
Equator-to-pole gradient, W-m~2 secrvranes | =22,03 -23.35 -23.19 1.32 1.16 ~.16
10® regional radiant exitance, H-m-z H
Pacific, tropical cecsssssescerseccassns | 266,03 270.64 263.94 -4.61 2,09 6.70
Pacific, high latitude .seescesncesecses | 191.33 186.87 191.40 4.46 -.07 -4.53
Atlantic, Subtropical sisecescvestessses | 268,29 280.04 274,47 -11.7% -6.18 5.57
Sahara «seese teasaeresessssacsasssecanen 279.59 308.38 289.95 -28.79 -10.36 18.43
Greenland sececesscssscccss senesann evesss | 221,09 226.29 213.77 -5.20 7.32 12.52
South POle cevsececrecccsccnscnnanes sses [ 124.50 96.55 111.05 27.95 13.45 -14.50
Area weighted mean of absolute zonal differences, w-m-z ................. 7.42 4.04 4.84
Area weilghted mean of absolute 10° regional differences, W-m 2 L ieeeen.. 10.65 5.95 8.60
Standard deviation of 10° regional differences, w—m-2 eessasessesesascsas 13.51 7.44 10.78
Correlation {(regional scale) ....... sesaasesesssesassessesansessnsananneas .95 .98 .97

a 2.5° quadrature scheme and was first presented in table II. The Lambertian func-
tion was chosen for its simplicity, and the 2.5° quadrature scheme for its accuracy.
The deconvolution solution taken from table IV corresponds to a spherical harmonic
expansion to degree 12 and a Lambertian directional function. The 12th degree expan-
sion was chosen since it probably represents the appropriate expansion limit for
monthly information over a yearly cycle, as discussed by Bess et al. (1981). The
Lambertian function was chosen so that the parameter estimation and the deconvolution
would have no differences due to the directional function. All three techniques
produced essentially the same estimate of the global radiant exitance. This is char-
acteristic of a flat-plate sensor and the wide field of view measurement. The other
pertinent parameters, however, depend on the technique employed.

The differences in these three solutions also are presented in table V. The two
solutions that correlate best on a 10° regional scale (eqg. (38)) are the shape factor
and the deconvolution §olutions, their correlation being 0.98. Their avergge zonal
difference is 4.04 W-m and their average regional difference is 5.95 W-m “. It is
surprising that the two techniques with the highest correlation should vary by this
large amount. The regional standard deviation of 7.44 Wem 2 implies that about
95 percent of the regional differences are between 15 W-m . The two solutions with
the least correlation are the shape factor and the parameter estimation solutions.
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Figure 8.- Zonal differences for three techniques.



The regional standard deviation for these two solutions was 13.51 W-mfz. The distri-

butions of these differences are presented in histograms in figure 9. These distri-
butions are approximately normal and centered about zero. The common global value
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Figure 9.~ Histograms of regional differences for the three techniques.

for the three solutions results in the zero means. Again, we see that the shape
factor and the deconvolution solutions are most similar on a regional scale.

The three solutions can also be compared by examining their spatial spectra.
The basic representation of the deconvolution solution is in the spherical harmonic
coordinate system. The shape factor and the parameter estimation solutions have been
transformed to the spherical harmonic system, and the spatial spectrums of all three
solutions are compared in figure 10. The spectrum of the parameter estimation solu-
tion decreases up to about degree 15 and then exhibits a different type of behavior.
The deconvolution spectrum follows the parameter estimation gspectrum very closely to
degree 12 and is zero from there on because of the 12th degree truncation. The
shape factor spectrum gradually departs from the other two spectrums, the departure
becoming significant after degree 3.
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Figure 10.- Degree dispersion for the three techniques.

By comparing the spectral content of the three solutions, we conclude that the
parameter estimation and deconvolution solutions are most similar on this basis to
degree 12 and that the shape factor solution does not compare favorably with the
other two solutions. Recall that the deconvolution technique enhances the high-
frequency spatial components of the solution by dividing by a decreasing sequence of
eigenvalues (eq. (20)). The shape factor technique, on the other hand, divides all
measurements by a single shape factor (eg. (6)) which is equivalent to dividing all
frequency components by the first eigenvalue XO . Thus, the difference between the
two spectra increases with degree. Since the wide field of view sensor smooths the
measurements, it is reasoned that the deconvolution technique yields the more accu-
rate solution. Although not explicit in the formulation, it can be concluded that
the parameter estimation solution also enhances the high-frequency components, since
it is so similar to the deconvolution solution. This enhancement was also demon-
strated by Smith et al. (19275). Moreover, the 10° x 20° grid system does not seem to
degrade the parameter estimation solution. It is remarkable that the spectra of the
parameter estimation and deconvolution solutions are so similar considering that the
spherical harmonic coefficients of the deconvolution solution were initially computed
at satellite altitude with 5° x 5° regional data and the coefficients of the param~-
eter estimation solution were computed at the top of the atmosphere with 10° x 20°
regional values.
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However, the parameter estimation and the deconvolution solutions do not compare
favorably_on a regional scale (from table V, the average regional difference is
8.60 W-m “). The problem results from the coordinate system transformations. The
deconvolution solution is defined in terms of spherical harmonics. The parameter
estimation solution is defined on a 10° X 20° grid system, converted to a 10° X 1Q°
grid system, and then converted to a spherical harmonic representation.. Tradition-—
ally, the transformation from regions to spherical harmonics has been considered
valid to a degree number N equal to 180 divided by the region size, or N = 18 for
10° regiong. Rapp (1977), however, has shown that this transformation can be
expanded even beyond this degree. We have extended the transformation to N = 24 in
figure 10 but have only compared to degree 12, since that is the limit of the decon-
volution spectrum. Certainly the transformation from regions to spherical harmonics
yields a spectrum of the parameter estimation solution reliable to degree 12. This
is further substantiated by the favorable comparison of the two spectra. The
regional comparison, on the other hand, necessitated transforming the deconvolution
solution from spherical harmonics to regional values. Traditionally, this transfor-
mation is valid for grid sizes equal to 180 divided by N, or 15° regions for the
12th degree spherical harmonic expansion. Thus, the 12th degree spherical harmonic
solution is not adequate to establish 10° regional values. Traditionally, a spher-
ical harmonic expansion to degree 18 would be required to yield 10° regional values.
Rapp finds that even an 18th degree expansion is inadequate and suggests that a 27th
degree spherical harmonic expansion would be necessary to recover 10° regional
values. Thus, the present deconvolution solution of degree 12 is quite insufficient
to yield 10° regional values. For this reason the parameter estimation and decon-
volution solutions do not compare favorably on a 10° X 10° grid system. Since only a
12th degree solution is available to define the regional values, they are smoothed
because of the lack of the high-frequency terms. As previously discussed, the shape
factor solution is also a smoothed representation, since it does not enhance the
high-frequency components of the solution. Thus, these two smooth solutions, from
the shape factor and deconvolution techniques, compare favorably on a regional basis.
Nevertheless, the parameter estimation technique may give more reliable 10° X 10°
regional values than either of these two smoothed solutions. However, because the
true field is unknown, one cannot demonstrate the accuracy of any analysis technique
on the basis of these results.

As previously discussed, use of 10° x 20° regions in the parameter estimation
technique 4id not seem to degrade the spectrum of the solution, at least not to
degree 12. From the deconvolution technique we can obtain the grid size resolution
by the traditional method of dividing 180° by the degree number 12. This would imply
that 15° x 15° regions, of which there are 185 to cover the globe, can be resolved.
However, there are 208 regions of size 10° x 20° over the globe. Thus, we conclude
~ that a 10° x 20° regional system is adequate.

The three numerical examples considered in this section are summarized in
table VI. The sensitivity of the three techniques to the assumed directional func-
tion represents the difference in the solution using the Lambertian and limb darken-
ing functions. The parameter estimation technique is more sensitive than the decon-
volution technique. The shape factor technique is independent of directional
function. The computer storage requirements and running times are also given for
comparison and should be interpreted relatively, since the skill of the programmer
and the type of computer affect these numbers. We can conclude, however, that the
computational burden for the shape factor and deconvolution techniques is small
compared with that for the parameter estimation technique. Since the gquadrature
scheme and the directional function greatly affect the computational burden, more
detailed entries are given in table VI for the parameter estimation technique.
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TABLE VI.- SUMMARY OF NUMERICAL EXAMPLE SOLUTIONS

Technique

Shape factor

Parameter estimation Deconvolution

Algorithm

Data processing

Data set

Grid system
Directional function,

Assumptions

Sensitivity to
directional function
Global difference
Zonal difference
10° regional diffe

Computer storage

Computer running
time, sec

R Homogeneous

MO, ) = F~! m(0,,%,)

Averaged over 5° X 5°
regions

59 X 5° regions

Individual Batch

regions

M= "3 8T

Averaged over 5° X 5°

Lambertian or limb darkening

n=0 m=-n

Batch

10° X 20° regions Spherical harmonics

1. Radiant exitance constant 1. Radiant exitance constant 1. Sensor response function

N n
- _ -1
Mo, = 3 3 ATl v,
Averaged over 5¢ X 5° regions

Lambertian or limb darkening

=12

over FOV over 5° X 5° regions of @ only
2. Estimate associated with 2, R known for each grigd 2. R function of © only and
nadir point region homogeneous over globe
3. Extrapolate 10° X 20° 3. Data defined on sphere
region to 10°® X 10° 4. Solution truncated at N
region
,a W—m-Z:
None None None
None 0.85 0.55
rence None 1.20 0.75
17 000 bea goo  ©72 000 21 000
1 L D: Y456 151 5

Lamb: P335

S120

3pifference between solutions with Lambertian and with limb darkening directional functions.
For quadrature scheme with 2.5° subgrid.

SFor quadrature scheme with 5° subgrid.

Finally, the advantages and disadvantages of the three techniques are summarized

in table VII.

complete data

rate spherical harmonic coefficients, and produces no quadrature errors.
however, have the disadvantage of inaccurate regional values.

The shape factor technique requires a minimim of computational time,
is independent of the directional function, and does not require knowledge of the

set. The deconvolution technique is fast computationally, gives accu-
They both,
Other than the compu-

tational burden, the parameter estimation technique is impressive, yielding accurate

spherical harmonic coefficients from 10° x 10° regional values.
the regional values are reliable.

each gquadrature subregion, the technique has considerable flexibility.

TABLE VII.- ADVANTAGES AND DISADVANTAGES OF TECHNIQUES

Technique

Advantages

Disadvantages

Shape factor

Simple, fast

Requires little storage

Popular

Does not require complete data set
Accurate global mean

Independent of R

Responds to local discontinuity

Does not enhance high frequency

Inaccurate regional values

Inaccurate high-frequency
spherical harmonic components

Parameter estimation

Enhances high fregquency

Heterogeneous R over globe

Accurate spherical harmonic
coefficients

Requires large storage
Requires complete data set
Extrapolation from 10° x 20¢

regions to 10° x 10° regions
Quadrature errors

Deconvolution

Fast

Accurate spherical harmenic
coefficients to degree 12

Requires little storage

Enhances high frequency

No quadrature errors

Inaccurate regional values

Requires complete data set
defined on sphere

R function of 6 only
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CONCLUSIONS

Three data analysis techniques have been examined for estimating radiant exit-
ance at the top of the atmosphere from Earth radiation budget observations. The
shape factor, parameter estimation, and deconvolution techniques have been compared
by examining their assumptions and characteristics, applying them to the same data
set, and transforming their results to the same coordinate system.

The characteristics of the shape factor technique were examined by estimating
the radiation field over a 5° and a 10° grid system. The difference between these
two approaches was 0.30 W-m “ on a global scale and 0.83 W-m < on a 10° regional
scale. These results are independent of the directional function since we assumed
the same directional function for all points on the globe. This assumption was shown
to yield a shape factor which is independent of the directional function.

Two factors affect the radiation field derived by the parameter estimation tech-
nique: the directional function and the gquadrature formula. The difference between
using a Lambertian and a limb darkening function was negligible on a global scale and
1.20 W-m < on a 10° regional scale. The difference between a 2.5° and a 5° quadra-
ture scheme was 0.05 W—m-2 on a global scale and 0.76 W-m < on a 10° regional scale.

Implementation of the deconvolution technique requires that we define the direc-
tional function and that we truncate the spherical harmonic expansion at some finite
degree. Neither one of these two factors affected the global average. ©On a 10°
regional scale, tE% difference between using a Lambertian and a limb darkening func-
tion was 0.75 W-m and the difference between truncating the spherical harmonic
expansion at degree 12 and at degree 15 was 3.94 W-mfz. Thus, on a regional scale,
the degree of truncation has more influence on the derived radiation field than the
directional function.

The three data analysis techniques have been intercompared. All three tech-
niques produced essentially the same estimate of the global radiant exitance. The
two solutions that have the highest correlation on a 10° regional scale are the_shape
factor and deconvolution solutions. Their 10° regional difference is 5.95 W-m “.

The favorable comparison of these two solutions is due to their smoothness. The
shape factor smooths the solution by not enhancing the high spatial frequencies. The
deconvolution technique smooths the solution by truncating the spherical harmonic
representation at a finite degree.

Another comparison of the three solutions is made by examining their spatial
spectra. The parameter estimation and the deconvolution spectra are very close out
to degree 12 where the deconvolution spectrum is truncated. The shape factor spec-—
trum gradually departs from these two spectra, the departure becoming large after
degree 3. The parameter estimation and the deconvolution solutions do not compare
favorably on a regional scale because the 12th degree spherical harmonic solution is
not adequate to establish 10° regional values. However, their spatial spectra do
compare favorably (out to degree 12) since 10° regional values yield a reliable spec—
tra to degree 12. Even though the shape factor and the deconvolution solutions com-
pare most favorably on a 10° regional scale, the parameter estimation technique may
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give more reliable 10° regional values than either of the two smoothed solutions.
However, because the true radiation field is unknown, one cannot demonstrate the
accuracy of any of the three analysis techniques on the basis of these results.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

September 9, 1981

R

34

=



APPENDIX A

SPHERICAL HARMONIC COEFFICIENTS FROM REGIONAL VALUES

Consider the radiant exitance field over the globe in terms of regional values
which are the average radiant exitances over the regions. A set of regional values
can be transformed to spherical harmonic coefficients by the principle of orthogonal
projection, that is,

~ _ 1_— ~ m
g fsphere X(0,2) ¥ (0,8) aa (a1)

where Eg are the spherical harmonic coefficients and X(©,P) is known in terms of
regional values. These coefficients, however, represent the averaged or smoothed
field. To compute the original, or unsmoothed, coefficients from the regional
values, Eﬁ must be increased, or enhanced, to represent the original field. The
smoothing parameter Bn defined by Pellinen (1967) is used for this purpose. Fol-
lowing his approach, define the original spherical harmonic representation as

@ n
X(0,®?) = Z Z N:(Cl: cos mP + S: sin m<I>) P:(cos ) (A2)
n=0 m=0

and the spherical harmonic representation of the constant regional values which
requires an infinite number of terms can be defined as

~

n
X(0,8) = Y 3 N:<C: cos md + S: sin mqa) P:(cos 0) (a3)

where X(0,®) = X, 1is constant for 9k1 <0< ekZ and ¢k1 < & < ¢k2. Rapp (1977)
has shown that it is theoretically expedient to use a circular smoothing operator in
place of the rectangqular regional operator (eq. (30)). The angular radius of the
circular region Y* is chosen so that the areas of the circular region and the rec-
tangular region are the same. This relationship is given by

. 1/2
. *\ _ (O gin 9)
sin (L2 ) = (———‘m

where © is the angular dimension of the rectangular region. A 10° X 10° rectangu-
lar region corresponds to a circular region with Y* = 5.63°.

The circular smoothing operator is similar to the rectangular smoothing operator

(eg. (30)) and is given by
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APPENDIX A

-2

A

-Y*
X(0,P) sin Y ay 4B

X (a4)

k *

f sin Y dy ap
B=0 =0

27T

-<O

o
f;

where Y and B are the polar coordinates describing the circular region centered
0 ., +0 & + &

1 2 ;
at ek = -51—5——53 and @k = —5——5——E—. Pellinen presented the following
relationship:

) 21 sin m®
/ﬁ _/~ plY) P:(cos 0) sin v 4B ay

Y=0 B=0 cos md
m sin'mgk n 0
= 2% P (cos © ) p(Y) P (cos Y) sin Yy Ay (a5)
n k n
cos mP Y=0
k
where the weighting function p(Y) is taken as
1 (0° < v < y*)
ply) =
0 (Otherwise)

Substituting equation (A2) into equation (A4) yields

2T Y* @
/ﬁ j~ 2: SN ( : cos m® + S: sin n¢) P:(cos ©) sin v dy ap

k 271(1 - cos Y*)

X = E Z BnN::(C: cos m‘I’k + S:_ln sin rr@k) P:(cos Gk) (A6)
where
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] .
Bn = 1 - cos 7+ [Y Pn(cos ¥) sin y dy

Using

-1 __|a -4
Pa®) =y 1[dx Par1 ¥ T g Pn-1(X)]

we can express the smoothing parameter Bn as

g = ! ! En_1(cos Y*) - Pn+1(cos Y*E] (n =1, 2, «s.)

n 1 - cos y* 2n + 1

and BO = 1,

Now X in equation (A6) represents the average over a circular region centered
at © and &.. If this expression is used to approximate the average over a rec-—
tangular region, then we substitute X for X(0,®) in equation (A3) and by

and §$ = ang « Thus, the original spher-

comparing coefficients obtain &J = B Cp
ical harmonic representation denoted by CE and Sﬂ is smoothed by the parameter
B, when averaged over a region. To compute the original spherical harmonic coef-
ficients Cg and Sg from the regional values, we first must calculate the spheri-

cal harmonic coefficients Eﬂ and §§ that represent the smooth field by egua-

. A . -1 m m =1am
tion (A1) and then divide them by f,; that is, = Bn and S, =8, S,. It
is interesting to note that as a result of equation (A5), B, is a function of
degree n but not a function of order m of the spherical harmonic. The smoothing

parameter f, is presented in fiqure 3 for two values of y*.
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APPENDIX B

10° X 10° REGIONAL VALUES FROM 10° X 20° REGIONAL VALUES

In this appendix, a formula for estimating 10° X 10° regional radiant exitances
from 10° X 20° regional radiant exitances is derived on a zonal basis so that the
10° X 20° regional estimate of one zone affects only the 10° X 10° regional estimates
of that zone. The criterion for dividing the estimate is that the sum of the slopes
squared around the zone is a minimum. This yields the solution with lowest spatial
frequency. Consider a zone composed of 10° X 20° regions, where the radiant exit-
ances are denoted by My, MZ' ceey Mn. Further let us define the 10° X 10° radiant
estimates by M4, My, Myq, My, ..., M5, where M;, corresponds to the western
half of the ith region and Mo corresponds to the eastern half. Thus,
M; = (1/2)(M;4 + M;,). The following diagram is helpful:

1
M, M, M
v .
N D —
-1
M M
11 12 | M24 M M Mo | M4 j
[« A% -

The sum of the slopes squared S is

Substituting the relation M5, = 2Mi - M;, gives

or in matrix form

s = SMTM + 6XTX - 12XTh + 2XTPX - 4XTPTh
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where

M = [M1 M, M ]

T

X [M" Myy e Mn1]
r h—
0 1 0
0 0 1 see 0
* [ ) [ ] L]

P = ® L] [ L] °
L] [ ] ® [ ] *
0 0 0 1
1 0 0 0
S o

Since we desire to minimize S with respect to X,

=1 - 124 + 2PX + 2P°X - 4P°M = 0

or

(6I + P + PU)X = (61 + 2P )M (81)

The solution of equation (B1) for X defines M

i1 (=1, 2, .¢., n), and
Mjp = 2M; = M;q.

These are the 10° X 10° regional radiant exitances that minimize

the sum of the slopes squared and give the smoothest curve through the data. Solving
equation (B1) for n = 4 gives

1
1 _ L .
i1 -6 My oM, - ML) (i=1,2 3, 4) (B2)

where My = M, and M .4 =My. For n =35,

1

M,y =59 (M;_, + SM, 4 to29M, - 5M. .+ M) (1 =1, 2, «ae, 5)

where M_4 = M,-q¢ and M, ., ='My. For this study we have approximated the solution

to equation (B1) by equation (B2) for all n.
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SPECTRUM OF A RANDOM FIELD

The interpretation of a nearly constant spectrum as random noise is illustrated
by examining the spectrum of a random field. Define the random field by 5° X 5¢°
regional values » where X, is a pormal random variable with mean zero and vari-
ance « Also define E[ka.] = 5%62, which is the regional equivalent of white
noise. From appendix A the spherical harmonic coefficients for this random field are

K
c, = 411:[3 2 X f Yon(0:®) a
n k=1 Region k
and
m 2 1 2 X m m
= @ T @I L}
(cn) 47 ) Z; z: xkxj jﬂ . j” . . ch(O, ) ch(@ (') da aA
n k=1 j=1 Region k “Region j
2
and the expected value of (Cg) is
n 2 p 2 K n 2
E (cn) -(m) X |/ YT (0,9) aa (c1)
n k=1 Region k

We derive a similar expression for E[(Sm)z] and define
n

E[O'nz] = mZio E (c’:) + E (s:) (c2)

which is represented in fiqure 6 for ¢ = 10 W-m-z. Although the spectrum for the

random field gradually increases for n > 15, it supports the interpretation of a
constant spectrum as noise. Note that if the regions are sufficiently small so that

an can be assumed constant over the region, then

2
f " (0,2) aal| = (Ym) Ak2 = A f <Ym ) aa
Re cn cen Region k cn

gion k

and equation (C1) becomes
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2

6] () B L 5

gion k

For small regions the smoothing parameter Bn is approximately unity for all n.
Also, if we assume all areas to be equal, that is, Ak = A = 41/K, and make use of
the orthogonality condition (eq. (23)), then

2 2 2 2

(o}
B (cm) _ (d ) A J[ (Ym ) A =
n 4n cn K
Sphere

with a similar expression for E[(Sﬂ)zl, the expected value of the degree variance
for small regions is approximately given by

EE,nz] BNCLE 1) )

Thus, the spectrum of a random field defined on a regional grid system is propor-
tional to JZn + 1, and for a 5° X 5° regional grid system the spectra given by equa-
tions (C2) and (C3) are indistinguishable.
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